Heterogeneous Electrocatalysts for CO2 Reduction

Gu X-K., Carneiro J. S. A., Nikolla, E., 

in Catalysis Vol. 29, Royal Society of Chemistry (2017).

Previous Publications (2002 - 2011)

Nikolla E., Román-Leshkov Y., Moliner M., Davis M.E., “One-Pot Synthesis of HMF from Carbohydrates using Tin-Beta Zeolite”, ACS Catal.,1 (4), 2011.

Xin H., Schweitzer N., Nikolla E., Linic S., "Developing Relationships between the local chemical activity of alloy catalysts and physical characteristics of constituent metal elements”, J. Chem. Phys., 132, 111101, 2010.

Schweitzer N., Xin H., Nikolla E., Linic S., “Establishing relationships between the geometric structure and chemical reactivity of alloy catalysts based on their measured electronic structure”, Topics in Catalysis, 53, 483, 2010. 

Nikolla E., Schwank J., Linic S., “Direct Electrochemical Oxidation of Hydrocarbon Fuels on SOFCs: Improved Carbon Tolerance of Ni Alloy Anodes ”, J. Electrochem. Soc., 156, B1312, 2009.

Nikolla E., Schwank J., Linic S., “Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry”, J. Catal., 263 (2), 220-227, 2009.

Nikolla E., Schwank J., Linic S., “Measuring and relating the electronic structure of nonmodel supported catalytic materials to their performance”, J. Amer. Chem. Soc, 31 (7), 2747-2754, 2009.

Nikolla E., Holewinski A., Schwank J., Linic S., “Hydrocarbon Steam Reforming on Ni Alloys at Solid Oxide Fuel Cell conditions”, Catal. Today, 136 (3-4), 243-248, 2008.

Nikolla E., Schwank J., Linic S., “Promotion of the long-term stability of reforming catalysts by surface alloying”, J. Catal., 250 (1), 85-93, 2007.

Nikolla E., Holewinski A., Schwank J., Linic S., “Controlling Carbon Chemistry by Alloying: Carbon Tolerant Reforming Catalyst”, J. Am. Chem. Soc., 128 (35), 11354-11355, 2006.

Nikolla E., Harmon K. M., Armstrong., “Hydrogen bonding. Part 83. The bistroponehydrogen cation: preperation, IR, and MO study of a proton bridged dimer of tropone with a covalent three-center OHO bond”, J. Mol. Struct.,691 (1-3), 211-216, 2004.

Nikolla E., Harmon K. M., “Hydrogen bonding. Part 82. Thermodynamic and infrared study of dimethonium and pentamethonium halide dehydrates”, J. Mol. Struct., 657 (1-3), 117-123, 2003.

Nikolla E., Harmon K. M., “Ionic organoboranes. Part 9. Ab initio molecular orbital study of energy, structure, and frontier orbitals of the isomeric[7.7.10x,y]ousenses”, J. Mol. Struct., 655 (2), 251-257, 2003.

Nikolla E., Harmon K. M., Benning N., “Hydrogen bonding. Part 81. Infrared and molecular orbital study of hydrate of N,N-dimethyl-1-adamanamine-hydrogen fluoride.” J. Mol. Struct. 642, 85-91, 2002.

Nikolla E., Harmon K. M., Drum D., “Hydrogen bonding. Part 80. Molecular orbital evaluation of CH hydrogen bonding in tetramethylammonium tetrahydroborate.” J. Mol. Struct., 616 (1-3), 181-186, 2002.

ACS Editor’s Choice

Hydropyrolysis of Lignin Using Pd/HZSM-5

Jan O., Marchand R., Anjos L. C. A., Seufitelli G. V. S., Nikolla E., Resende F. L. P., 

Energy&Fuels, 29, 1793, 2015.

Engineering Complex, Layered Metal Oxides: High-Performance Nickelate Oxide Nanostructures for Oxygen Exchange and Reduction

Ma X., Carneiro J. S. A., Gu X-K., Qin H., Xin H., Sun K., Nikolla E.,

ACS Catal., 5, 4013, 2015.

Electro- and Thermal-Catalysis by Layered, First Series Ruddlesden – Popper Oxides

Das A., Xhafa E., Nikolla E.,

Catalysis Today 277 (2016): 214-226.

Optimizing Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells (SOFCs): Oxygen Reduction on Nanostructured Lanthanum Nickelate Oxides

Carneiro J. S. A., Brocca R. A., Lucena, M. L. R. S., Nikolla, E.,

Applied Catalysis B: Environmental., (2017).

Well-defined Nanostructures for Catalysis by Atomic Layer Deposition

  1. Y.Pagán-Torres, J. Lu, E. Nikolla, A.C. Alba-Rubio.

Morphological, compositional, and shape control of materials for catalysis, Volume 177. Eds. P. Fornasiero and M. Cargnello. Elsevier (2017). ISBN: 9780128050903.

Advances in methane conversion processes.

Wang, B., Albarracín-Suazo, S., Pagán-Torres, Y., & Nikolla, E., Catalysis Today 285 (2017): 147-158.

First-Principles Study of High Temperature CO2 Electrolysis on Transition Metal Electrocatalysts.

Gu, X. K., Carneiro, J. S., & Nikolla, E.,

Industrial & Engineering Chemistry Research (2017).

Directing Reaction Pathways through Controlled Reactant Binding at Pd–TiO2 Interfaces.

Zhang, J., Wang, B., Nikolla, E., & Medlin, J. W., 

Angewandte Chemie, (2017).

Identifying optimal active sites for heterogeneous catalysis by metal alloys based on molecular descriptors and electronic structure engineering

Holewinski A., Xin H., Nikolla E., Linic S.,

Current Opinions in Chemical Engineering, 2, 312, 2013.

Metalloenzyme-like Catalyzed Isomerizations of Sugars by Lewis Acid Zeolites

Bermejo-Deval R., Assary R. S., Nikolla E., Moliner M., Román-Leshkov Y., Hwang S., Palsdottir A., Silverman D., Lobo R., Curtiss L. A., Davis M.E., , Proc. Natl. Acad. Sci, 109 (25), 9727, 2012.

2012 - current

Control of interfacial acid-metal catalysis with organic monolayers.

Zhang, J., Ellis, D. L., Wang, B., Dzara, M., Sievers, C., Pylypenko, S., Nikolla, E., Medlin, J. W.*,

Nature Catalysis, (2018).